Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2025
PALACIOS PUEBLA
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA PALACIOS PUEBLA
3.
[Claudio, el trigonómetra] Un fin de semana largo, Claudio, el trigonómetra, decide hacer un viaje al campo para tomar aire fresco.
d) Ya cansado de descansar, encara el último tirón hasta Z. Mientras maneja su coche en el camino, unos $40^{\circ}$ al este ve un enorme silo cerealero. Recorre 10 kilómetros más y divisa el mismo silo esta vez a $59^{\circ}$ grados al este. ¿A qué distancia está el silo en ese momento?
d) Ya cansado de descansar, encara el último tirón hasta Z. Mientras maneja su coche en el camino, unos $40^{\circ}$ al este ve un enorme silo cerealero. Recorre 10 kilómetros más y divisa el mismo silo esta vez a $59^{\circ}$ grados al este. ¿A qué distancia está el silo en ese momento?
Respuesta
Arrancamos de nuevo con un esquema:

Reportar problema

Fijate que el ángulo de $19°$ no me lo dan directamente, pero se puede deducir.
Y ahora, lo que necesitamos encontrar es la distancia $x$ entre el auto y el silo. Para eso, podemos usar el Teorema del Seno, que sirve para cualquier triángulo y nos dice que:
$ \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} $Donde \(A\), \(B\), \(C\) son los ángulos opuestos a los lados \(a\), \(b\), \(c\) respectivamente.
Por ejemplo, en este caso el lado opuesto al ángulo de $40°$ es nuestra incógnita $x$, mientras que el lado opuesto al ángulo de $19°$ es la distancia de $10$ km que es dato. Entonces podemos plantear:
$\frac{10 \text{ km}}{\sin(19°)} = \frac{x}{\sin(40°)}$
Despejando,
$x = \frac{10 \cdot \sin(40°)}{\sin(19°)}$
Si hacemos la cuenta en la calculadora, obtenemos...
$x \approx 19.74$ kilómetros.
Por lo tanto, en ese momento el silo se encuentra a aprox. $19.74$ kilómetros de distancia.
Pregunta: ¿A qué distancia se encontraba el silo la primera vez que miró?
Pista, fijate que esa distancia es el lado del triángulo que nos falta conocer... ¿cuál es el ángulo opuesto? ¿podemos conocerlo con los datos que tenemos?
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.